Проводимости
Комплексной проводимостью называется отношение комплексного тока к комплексному напряжению
где y=1/z — величина обратная полному сопротивлению, называется полной проводимостью.
Комплексная проводимость и комплексное сопротивление взаимно обратны. Комплексную проводимость можно представить в виде
где — действительная часть комплексной проводимости, называется активной проводимостью; — значение мнимой части комп-лексной проводимости, называется реактивной проводимостью;
Из ( 3.30) и ( 3.29) следует, что для схемы, представленной на рис. 3.12, комплексная проводимость
где
и называются соответственно активной, индуктивной и емкостной проводимостями.
Реактивная проводимость
Индуктивная и емкостная проводимости — арифметические величины, а реактивная проводимость b — алгебраическая величина и может быть как больше, так и меньше нуля. Реактивная проводимость b ветви, содержащей только индуктивность, равна индуктивной проводимости , а реактивная проводимость b ветви, содержащей только емкость, равна емкостной проводимости с обратным знаком, т. е. .
Сдвиг по фазе между напряжением и током зависит от соотношения индуктивной и емкостной проводимостей. Для схемы по рис. 3.12 на рис. 3.14 представлены векторные диаграммы для трех случаев, а именно При построении этих диаграмм начальная фаза напряжения принята равной нулю, поэтому , как это следует из ( 3.28), равны и противоположны по знаку ().
Рассматривая схему на рис. 3.12 в целом как пассивный двухполюсник, можно заметить, что при заданной частоте она эквивалентна в первом случае параллельному соединению сопротивления и индуктивности, во втором — сопротивлению и в третьем — параллельному соединению сопротивления и емкости. Второй случай называется резонансом. При заданных L и С соотношение между зависит от частоты, а поэтому от частоты зависит и вид эквивалентной схемы.
Обратим внимание на то, что в схеме рис. 3.12 каждая из параллельных ветвей содержит по одному элементу. Поэтому получилось такое простое выражение для У, в которое проводимости элементов входят как отдельные слагаемые.
Заметим, что обозначения применяются не только для сопротивлений и проводимостей, но и для элементов схемы, характеризуемых этими величинами. В таких случаях элементам схемы дают те же самые наименования, какие присвоены величинам, которые обозначаются этими буквами. Комплексные сопротивления или проводимости как элементы схемы имеют условное обозначение в виде прямоугольника (см. рис. 3.1). Точно так же обозначают реактивные сопротивления или проводимости, если хотят отметить, что они могут быть как индуктивными, так и емкостными сопротивлениями или проводимостями.
Электрические цепи переменного тока
Расчет цепей переменного тока
Символический метод расчета цепей переменного тока
Переменные токи
Понятие о генераторах переменного тока
Синусоидальный ток
Действующие ток, ЭДС и напряжение
Изображение синусоидальных функций времени векторами и комплексными числами
Сложение синусоидальных функций времени
Электрическая цепь и ее схема
Последовательное соединение резистивного, индуктивного и емкостного элементов
Сопротивления
Разность фаз напряжения и тока
Напряжение и токи при параллельном соединении
Проводимости
Пассивный двухполюсник
Мощности
Мощности резистивного, индуктивного и емкостного элементов
Баланс мощностей
Знаки мощностей и направление передачи энергии
Определение параметров пассивного двухполюсника
Условия передачи максимальной мощности
Понятие о поверхностном эффекте и эффекте близости
Параметры и эквивалентные схемы конденсаторов
Параметры и эквивалентные схемы катушек индуктивности и резисторов