Разность фаз напряжения и тока
Условимся под разностью фаз φ напряжения и тока всегда понимать разность начальных фаз напряжения и тока (а не наоборот):
Поэтому на векторной диаграмме угол φ отсчитывается в направлении от вектора I к вектору U (рис. 3.10). Именно при таком определении разности фаз угол φ равен аргументу комплексного сопротивления. Угол φ положителен при отстающем токе () и отрицателен при опережающем токе ().
Разность фаз между напряжением и током зависит от соотношения индуктивного и емкостного сопротивлений. При имеем и ток отстает по фазе от напряжения, . При имеем , ток совпадает по фазе с напряжением, rLC-цепь в целом проявляет себя как активное сопротивление. Это случай так называемого резонанса в последовательном контуре. Наконец, при имеем , ток опережает по фазе напряжение.
Векторные диаграммы для трех возможных соотношений даны на рис. 3.11. При построении этих диаграмм начальная фаза тока ; принята равной нулю. Поэтому равны друг другу.
Рассматривая при заданной частоте цепь по рис. 3.8 в целом как пассивный двухполюсник, можно ее представить одной из трех эквивалентных схем: при как последовательное соединение сопротивления и индуктивности (), при как сопротивление r и при как последовательное соединение сопротивления и емкости (). При заданных L и С соотношение между зависит от частоты, а потому от частоты зависит и вид эквивалентной схемы.
Выше, в разделе, было принято, что задан ток, а определялись напряжения на элементах и на входных выводах цепи. Однако часто бывает задано напряжение на выводах, а ищется ток. Решение такой задачи не представляет труда. Записав по заданным величинам комплексное напряжение U и комплексное сопротивление Z, определим комплексный ток
и тем самым действующий ток и начальную фазу тока.
Часто равной нулю принимается начальная фаза заданного напряжения: . В этом случае, как следует из раздела, начальная фаза тока ; равна и противоположна по знаку разности фаз φ, т. е .
Установленные выше соотношения между амплитудами и действующими токами и напряжениями, а также выражение для сдвига фаз ф позволяют вычислить ток и не прибегая к записи закона Ома в комплексной форме. Подробно этот путь решения показан в примере 3.4.
Пример 3.4.
К цепи, состоящей из последовательно соединенных конденсатора и катушки, приложено напряжение . Емкость конденсатора С=5 мкФ, сопротивление катушки r=15 Ом, индуктивность L=12 мГн. Найти мгновенные значения тока в цепи и напряжений на конденсаторе и на катушке.
Решение.
Схема замещения цепи показана на рис. 3.8.
Напряжение на емкости отстает от тока по фазе на 90°, следовательно,
Комплексное сопротивление катушки
Комплексная амплитуда напряжения на выводах катушки
Мгновенное напряжение на катушке
Пример 3.5.
В цепи, состоящей из последовательно соединенных конденсатора и катушки, ток I=2 А, его частота f=50 Гц. Напряжение на выводах цепи U=100 В, катушки Uкат =150 В и конденсатора Uс=200 В. Определить сопротивление и индуктивность катушки и емкость конденсатора.
Решение.
Полное сопротивление цепи z=U/I=50 Ом.
Полное сопротивление катушки zкат=Uкат/I=75 Ом;
Электрические цепи переменного тока
Расчет цепей переменного тока
Символический метод расчета цепей переменного тока
Переменные токи
Понятие о генераторах переменного тока
Синусоидальный ток
Действующие ток, ЭДС и напряжение
Изображение синусоидальных функций времени векторами и комплексными числами
Сложение синусоидальных функций времени
Электрическая цепь и ее схема
Последовательное соединение резистивного, индуктивного и емкостного элементов
Сопротивления
Разность фаз напряжения и тока
Напряжение и токи при параллельном соединении
Проводимости
Пассивный двухполюсник
Мощности
Мощности резистивного, индуктивного и емкостного элементов
Баланс мощностей
Знаки мощностей и направление передачи энергии
Определение параметров пассивного двухполюсника
Условия передачи максимальной мощности
Понятие о поверхностном эффекте и эффекте близости
Параметры и эквивалентные схемы конденсаторов
Параметры и эквивалентные схемы катушек индуктивности и резисторов