Трансформаторные подстанции высочайшего качества

с нами приходит энергия

develop@websor.ru

Возникновение переходных процессов и законы коммутации

В электрических цепях могут происходить включения и отключения пассивных или активных ветвей, короткие замыкания отдельных участков, различного рода переключения, внезапные изменения параметров и т. д. В результате таких изменений, называемых часто коммутационными или просто коммутациями, которые будем считать происходящими мгновенно, в цепи возникают переходные процессы, заканчивающиеся спустя некоторое (теоретически бесконечно большое) время после коммутации. Если нет специального указания, будем считать, что начало отсчета времени переходного процесса t=0 начинается с момента коммутации. Этот момент времени непосредственно перед мгновенной коммутацией обозначим 0 — , а сразу после мгновенной коммутации 0 + .
Сформулируем два закона коммутации.

1. В индуктивном элементе ток (и магнитный поток) непосредственно после коммутации в момент, который и назван моментом коммутации t=0+ , или, короче, t=0, сохраняет значение, которое он имел непосредственно перед коммутацией, т. е. при t=0-, и дальше начинает изменяться именно с этого значения:



Так, при включении ветви с катушкой, в которой не было тока, ток в этой ветви в момент коммутации равен нулю. Если для такой ветви допустить, что в момент коммутации ток изменится скачком, то напряжение на индуктивном элементе будет бесконечно большим, и в цепи не будет выполняться второй закон Кирхгофа.

2. На емкостном элементе напряжение (и заряд) сохраняет в момент коммутации то значение, которое оно имело непосредственно перед коммутацией, и в дальнейшем изменяется, начиная именно с этого значения:

Так, при включении ветви с конденсатором, который не был заряжен, напряжение на конденсаторе в момент коммутации равно нулю. Если допустить, что в момент коммутации напряжение на емкостном элементе изменяется скачком, то ток будет бесконечно большим, и в цепи не будет выполняться опять-таки второй закон Кирхгофа.
С энергетической точки зрения невозможность мгновенного изменения тока
и напряжения объясняется невозможностью скачкообразного изменения запасенной в индуктивном и емкостном элементах энергии (энергии магнитного поля и энергии электрического поля ). Действительно, скачкообразное изменение энергии требует бесконечно больших мощностей, что лишено физического смысла, так как реальные источники питания не обладают бесконечно большой мощностью и не могут ее обеспечить.

В этом разделе рассматриваются переходные процессы в линейных электрических цепях с сосредоточенными параметрами. Поэтому исключается из рассмотрения нелинейный элемент — электрическая дуга, которая может возникнуть при коммутациях. Чтобы исключить влияние дуги, будем считать, что длительность коммутации по сравнению с продолжительностью переходного процесса очень мала, т. е. теоретически мгновенная.
Записанные выше законы коммутации для тока
и напряжения в ветвях, содержащих реактивные элементы, при некоторых коммутациях не выполняются. Такие коммутации называют «некорректными» (приводят к требованию скачкообразных изменений токов и напряжений ). Расчет переходных процессов в таких цепях рассматривается в разделе.

Все страницы раздела на websor

Переходные процессы

Переходные процессы в электрических цепях
Законы коммутации
Переходный, установившийся и свободный процессы
Короткое замыкание rL-цепи
Включение rL-цепи на постоянное напряжение
Включение rL-цепи на синусоидальное напряжение
Короткое замыкание rС-цепи
Включение rC-цепи на постоянное напряжение
Включение rC-цепи на синусоидальное напряжение
Переходные процессы в rС-цепи
Апериодическая разрядка конденсатора
Предельный случай апериодической разрядки конденсатора
Периодическая (колебательная) разрядка конденсатора
Включение rLC-цепи на постоянное напряжение
Общий случай расчета переходных процессов классическим методом
Пример классического метода
Переходные процессы в цепях с взаимной индуктивностью
Включение пассивного двухполюсника к источнику непрерывно меняющегося напряжения
Включение пассивного двухполюсника к источнику напряжения произвольной формы
Переходная и импульсная переходная характеристики
Запись интеграла Дюамеля при помощи импульсной переходной характеристики
Метод переменных состояния
Численные методы решения уравнений состояния
Дискретные модели электрической цепи
Переходные процессы при некорректных коммутациях
Определение переходного процесса при воздействии периодических импульсов напряжения