Понятие о резонансе в сложных цепях
Условия фазового резонанса b=0 или x=0 для разветвленной цепи с несколькими катушками индуктивности и конденсаторами дают для частоты ω уравнения, которые могут иметь несколько действительных корней. Другими словами, у разветвленной цепи может быть несколько резонансных частот.
Рассмотрим, например, цепь на рис. 5.9, а, потерями в которой можно пренебречь. Входное сопротивление цепи реактивное:
Резонанс наступает при b=0 или x=0, причем если x=0, то , и, наоборот, если b=0, то . Это справедливо всегда, если пренебречь потерями в ветвях. Следовательно, резонансными будут частоты, обращающие x в нуль или в бесконечность. В рассматриваемом случае при или
При этой частоте наступает резонанс токов в параллельных ветвях с и . Полагая x=0, получаем
При этой частоте имеет место резонанс напряжений в последовательном контуре с индуктивностью и емкостью, эквивалентной двум параллельным ветвям. Таким образом, у рассматриваемой цепи две резонансные частоты: и .
На рис. 5.9, б приведены частотные характеристики проводимостей и сопротивлений для рассматриваемой цепи. Кривые и представляют характеристики проводимостей ветвей 1 и 2. Суммируя ординаты этих кривых, получаем характеристику эквивалентной проводимости b‘ двух параллельных ветвей 1 и 2. Кривая х’=1/b‘ представляет эквивалентное сопротивление параллельных ветвей. Суммируя ординаты кривых х’ и , построим характеристику входного сопротивления цепи х. Эта характеристика имеет две особые точки при (резонанс токов) и (резонанс напряжений).
Рис. 5.9
Резонансные явления в электрических сетях
Вынужденные и свободные колебания
Резонанс в последовательном контуре
Частотные характеристики и резонансные кривые последовательного контура
Резонансные явления при изменении параметров контура
Резонанс в параллельном контуре
Частотные характеристики параллельного контура
Понятие о резонансе в сложных цепях