Трансформаторные подстанции высочайшего качества

с нами приходит энергия

Электрическая емкость (страница 2)

1. К пластинам плоского конденсатора приложено напряжение U = 220 в.

Определить напряженность электрического поля Е между пластинами в средней его области, если расстояние между пластинами d=1 мм. Чему равна сила F, действующая в этой области поля на частицу с зарядом ?

Решение:
В средней области пространства между пластинами плоского конденсатора электрическое поле можно считать однородным. Линии напряженности электрического поля начинаются на поверхности положительно заряженной пластины и кончаются на поверхности отрицательно заряженной пластины. Эти линии перпендикулярны к пластинам. Поэтому расстояние между пластинами равно длине линии напряженности электрического поля. Следовательно, электрическое напряжение между пластинами, поделенное на расстояние между ними, равно напряженности электрического поля:

где расстояние d измерено в метрах. На частицу, обладающую электрическим зарядом , в этом поле действует сила

Единица измерения силы дж/м называется ньютоном (сокращенно н).

2. Напряжение между разомкнутыми зажимами генератора равно 115 в (рис. 1).
Определить потенциалы зажимов при: а) заземлении зажима «плюс»; б) заземлении зажима «минус».

Решение:
Электрическое напряжение U между зажимами «плюс» и «минус» генератора равно разности потенциалов этих зажимов:
. В первом случае заземлен зажим «плюс», следовательно, . Подставив числовые значения, получим

откуда
Во втором случае заземлен зажим «минус», следовательно,
. Подставив числовые значения, будем иметь

откуда

На основании решения задачи можно видеть, что определенной величиной является электрическое напряжение. Оно не изменяется при изменении потенциалов всех точек поля на одну и ту же величину одновременно. В то же время потенциалы в отдельных точках электрического поля могут изменяться в зависимости от заземления той или иной точки.

3. Определить необходимую толщину слоя слюды между пластинами плоского конденсатора, если его номинальное напряжение должно быть в 4 раза меньше пробивного напряжения . Пробивная напряженность слюды . Какой толщины потребуется электрокартон (для него ), если его применить вместо слюды?

Решение:
Пробивное напряжение

Принимая электрическое поле плоского конденсатора однородным, получим искомую толщину слоя слюды:

Так как пробивное напряжение равно 24 кв, то искомая толщина электрокартона

Отношение толщин связано с отношением напряженности следующим образом:

Следовательно, необходимые толщины диэлектрика обратно пропорциональны пробивным напряженностям.

4. Конденсатор емкостью С=1 мкф присоединен к сети с постоянным напряжением U=220 в.
Определить электрический заряд
пластины, соединенной с положительным полюсом сети. Каким был бы электрический заряд, если бы напряжение сети было вдвое меньше?

Решение:
Электрический заряд

где вследствие подстановки емкости С, измеренной в микрофарадах, электрический заряд измерен в микрокулонах.
Емкость С конденсатора — постоянная величина, если диэлектрические свойства изолятора между пластинами не зависят от напряжения
U, приложенного к пластинам конденсатора. Такая электрическая емкость называется линейной.
Когда конденсатор с линейной емкостью присоединяется к сети, имеющей вдвое меньшее напряжение, электрический заряд будет также вдвое меньше:

Поэтому правильный выбор емкости конденсатора обеспечивает необходимой величины заряд в случае включения конденсатора на номинальное напряжение.

5. Плоский конденсатор имеет емкость С = 20 пф.
Какими следует выбрать толщину диэлектрика из стекла
и площадь пластин, если конденсатор должен работать при номинальном напряжении , имея четырехкратный запас прочности?

Решение:
Пробивное напряжение при четырехкратном запасе прочности в 4 раза больше номинального напряжения:

Искомая толщина стекла

Из формулы емкости плоского конденсатора

определяем площадь пластины. В этой формуле величины измерены:

Подставим в нее числовые значения:

При меньших значениях и больших значениях d площадь пластины конденсатора должна быть больше.

6. Емкость конденсатора переменной емкости можно плавно изменять от 10 до 200 пф.
Какие границы изменения емкости можно получить, если присоединить к этому конденсатору такой же второй конденсатор?

Решение:
Присоединение второго конденсатора может быть последовательным и параллельным. Если второй конденсатор присоединен параллельно первому, то их эквивалентная емкость равна сумме емкостей отдельных конденсаторов.
Наибольшая емкость составит:

Если второй конденсатор присоединить последовательно к первому, то обратная величина эквивалентной емкости будет равна сумме величин, обратных емкостям отдельных конденсаторов. Поэтому наименьшая емкость определится так:

откуда

Таким образом, емкость изменяется от 5 до 400 пф.
Последовательное присоединение второго конденсатора уменьшило минимальную емкость, а параллельное присоединение второго конденсатора увеличило максимальную емкость.
При последовательном соединении двух одинаковых конденсаторов схему можно включать на напряжение в два раза большее, чем при параллельном соединении.